Microbial genomics and its application to biocontrol research; current and future perspectives

BPIA Meeting 27 March 2024

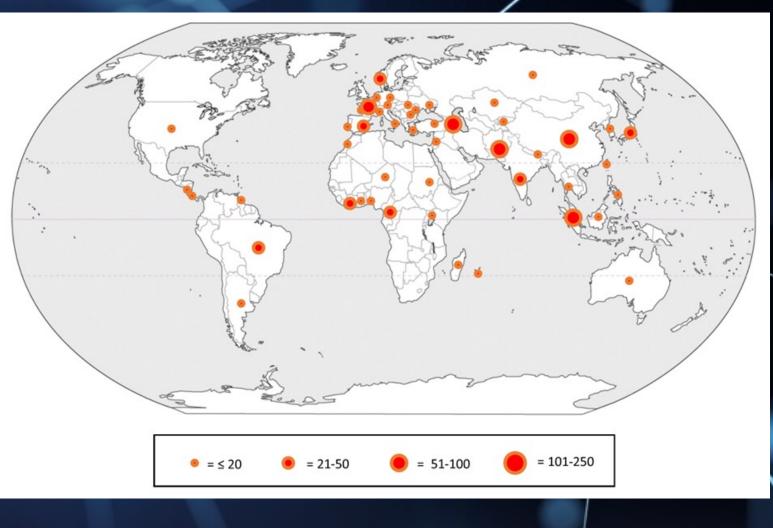
Crop Bioprotection Research Unit

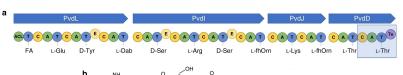
Christopher Dunlap

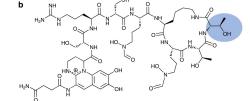
National Center for Agricultural Utilization Research, Peoria IL

Christopher.Dunlap@usda.gov

Current Research Projects


- Genomics of entomopathogenic fungi (-023)
- Genomics of biocontrol bacteria (-024)
- Genomics of bee associated microbes (-023, beenome)
- Biocontrol of ambrosia beetles (-024 NPDRS)



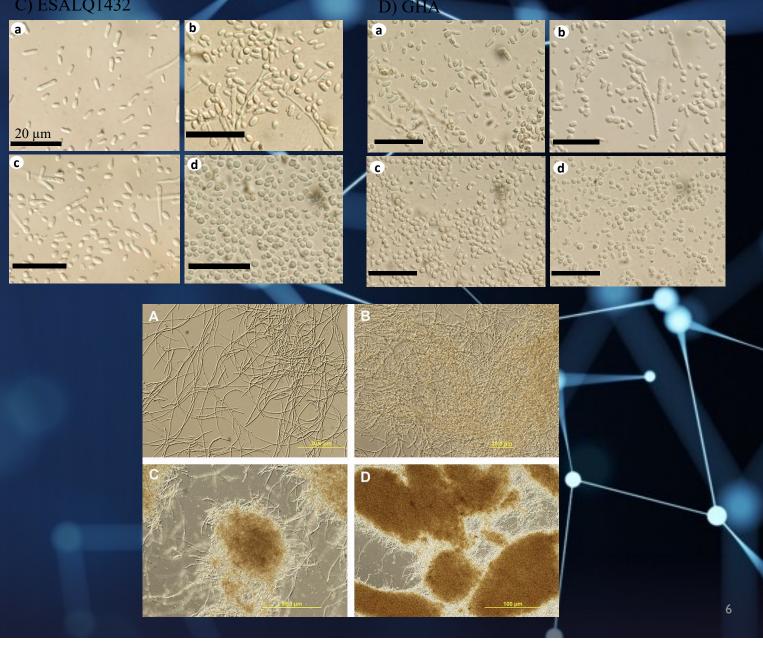

Genomics of entomopathogenic fungi

- Based on collection of ~1000 strains inherited from EBCL.
- Draft genomes for all and completed genomes for key species.
- Sequencing complete, working on data analysis and archiving.
- CRADA with a drug discovery company.

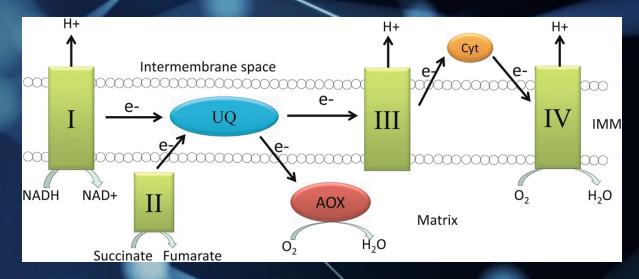
Genomics of entomopathogenic fungi

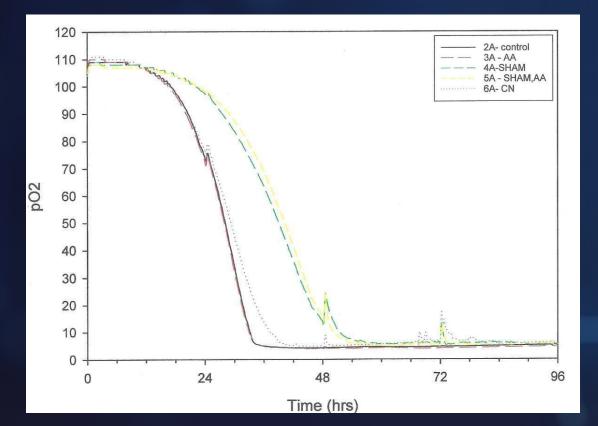
 The large data set offers us insights into the role of secondary metabolites (NRPS/PKS gene clusters) in EPF.

				1РК	(S-NR	R		Т	1PKS			N	IRPS																												
			Cluster 4	Cluster 14	Cluster 16	Cluster 31	Cluster 48	Cluster 33	Cluster 1	Cluster 29	cluster 28	Cluster 19	Cluster 23	Cluster 33	Cluster 36	Cluster 10	Cluster 34	Cluster 39	Cluster 44	Cluster 45	Cluster 37	Cluster 2	Oosporein	Destrucin	Cluster 1	Cluster 22	Beauvericin	Cluster 38	Cluster 16	Cluster 38	Cluster 42	Chuster 5	Cluster 6	Cluster 7	Cluster 9	Cluster 11	Cluster 12	Cluster 13	Cluster 24	Cluster 39	
Generalist	. javanica	CBS 134.22	х	х	x	x	сх	х	x	(X	х	х	х	x	(X	х	х	х	х	X	х									х	X	х	х	СХ	x	х	х	х	х	х	H
Generalist	. javanica	ARSEF 322	х	Х	x	х)	(X	х	X	(X	х	х	Х	x	(х	Х	х	Х	Х	X	х									х	X	x	x	(X	(х	Х	Х	Х	Х	х	
¹	. javanica	ARSEF 3581	х	Х	X	х)	(X	Х	X	(X	х	Х	Х	x	κх	Х	Х	Х	Х	X	х									х	X	х	Х	СХ	X	Х	Х	Х	Х	х	
l l	. amoenerosea	ARSEF 741										X	X	x	сх	Х	X		X	X	хх	(х	X	x						х	x	x	x	СХ	X	Х	Х	Х	X	х	
, i	. cateniobliqua	CBS 153.83									х	X	X	x	сх	Х	X	Х	X	X	хх	(х	Х	x						х	x	x	x	СХ	сх	Х	Х	Х	X	х	
1	. cateniobliqua	ARSEF 6244										х	Х	x	κх		Х		х	x	хх	сх	Х	х						х	x	х	x	СХ	x	Х	Х	Х	Х	х	
	. tenuipes	ARSEF 5135														Х								X	х х	х	X	хх	x	х	X	х	х	СХ	сх	Х	Х	Х	х	х	
Minimalist /	. tenuipes	ARSEF 3939																						x	х х	х	x	хх	x	х	x	х	х	СХ	x	Х	х	х	Х	х	
	. tenuipes	C-29																						x :	х х	х	x	хх	x	х	x :	x	х	СХ	x	Х	х	Х	Х	х	
			Species specific clusters								Sh	ar	e		ly	ist	e	^ \$																							


Genomics of entomopathogenic fungi

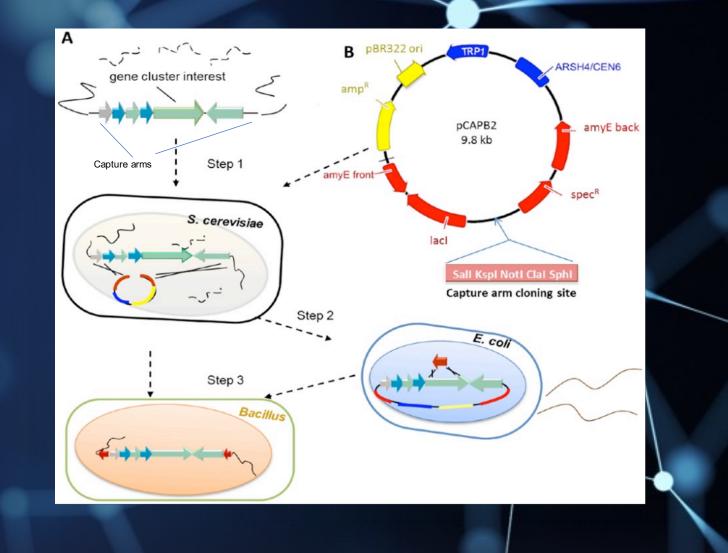
 Phase II is using Hi-C sequencing to associate chromatin status with key lifestyle events Understanding epigenetic control of gene expression in fungi


Genomics of entomopathogenic fungi

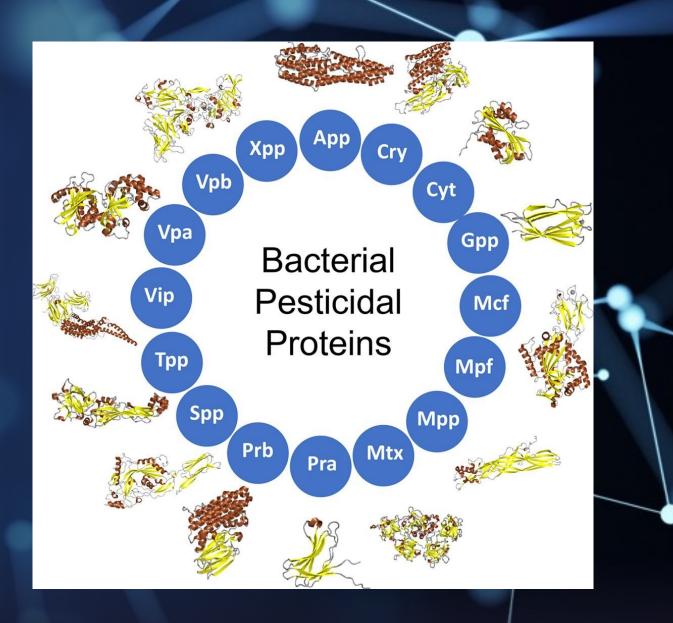

- Why is understanding epigenetics important for EPF?
- Associated with morphology transitions, a long-term goal of controlling which morphology we produce.

Genomics of entomopathogenic fungi

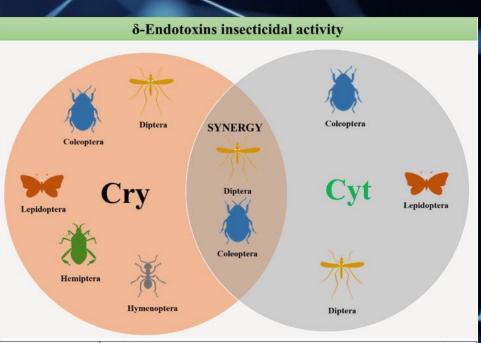
Fungal respiration during the production of entomopathogenic fungi


Fungal respiration in the presence of inhibitors for Beauveria bassiana.

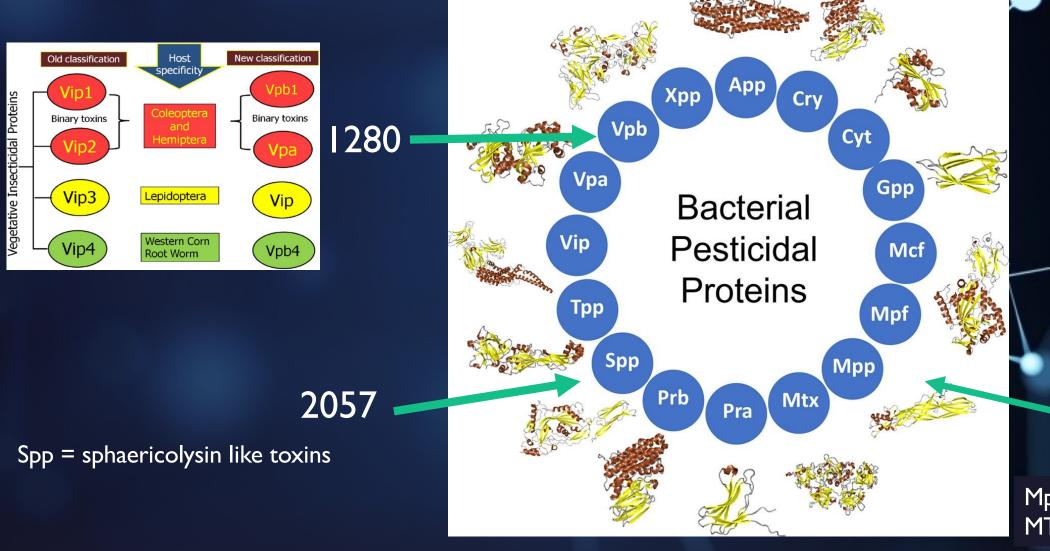
7


- Collaboration between the ARS Culture Collection (NRRL)
- Goal is to sequence ~5000 Bacillus sp strains.
- Collaboration with Dr Fred Cohan of Wesleyan University on Bacillus evolution

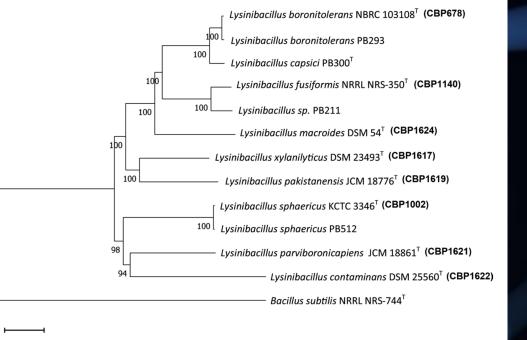
- Post-genomic project
- Identify and express unknown biosynthetic clusters.
- Identify new metabolites for crop protection applications.
- Other functional genomics experiments.



- Genome mining for new insect toxins
- Examined more than 5,500 genomes so far.
- I2,607 putative BIPs identified.


- Cry toxins 6381 identified.
- 227 below 44% AA homology
- 488 Between 44 75% AA homology

- Cyt toxins 123 identified.
- I8 below 44% AA homology
- 4 Between 44-75%
 AA homology

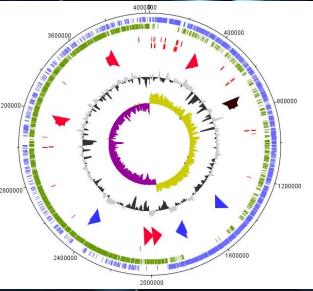

Diptera	Cry1(A-C), Cry2(A-B), Cry4(A-C), Cry10(A), Cry11(A-B), Cry16(A), Cry17(A), Cry19(A-C), Cry20(A), Cry21(A-H), Cry24(A-C), Cry25(A), Cry27(A), Cry29(A-B), Cry30(A-G), Cry32(B-D), Cry39(A), Cry40(A-D), Cry44(A), Cry47(A), Cry48(A),Cry49(A), Cry52(A-B), Cyt1(A-D), Cyt2(A-D), Cyt3(A)
Coleoptera	Cry1(A-I), Cry2(A), Cry3(A-C), Cry7(A), Cry8(A-G), Cry9(D), Cry14(A), Cry18(A-C), Cry22(A-B), Cry23(A), Cry26(A), Cry28(A), Cry34(A-B), Cry35(A-B), Cry36(A), Cry37(A), Cry38(A), Cry43(A-C), Cry55(A), Cyt1(A), Cyt2(C)
Lepidoptera	Cry1(A-K), Cry2(A-B), Cry7(B), Cry8(D) Cry9(A-C,E), Cry15(A), Cry19(A-C), Cry20(A-B), Cry22(A), Cry32(A), Cry51(A), Cry54(A-B), Cry59(A-B), Cyt2(B)
Hemiptera	Cry3(A), Cry5(A), Cry22(A)
Hymenoptera	Cry2(A), Cry3(A), Cry11(A)

David Fernández-Chapa, Jesica Ramírez-Villalobos and Luis Galán-Wong, 2019, Toxic Potential of Bacillus thuringiensis: An Overview. DOI: 10.5772/intechopen.85756

Mpp formerly MTX2, MTX3 and other Cry

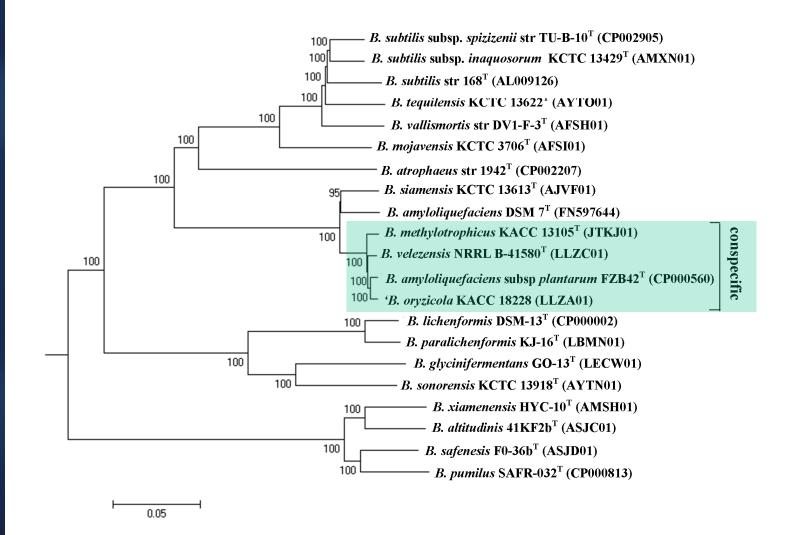
Lysinibacillus spp. as plant growth promters

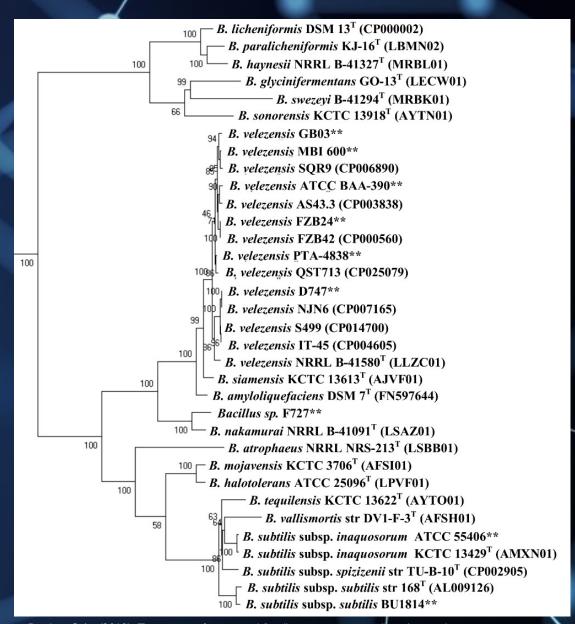
0.050



- One of the reasons that you may hate me.
- Before genomics, Bacillus taxonomy was incredibly hard and stupid.
- I have serendipitously become an expert in *Bacillus* taxonomy.
- In 2011, the first strain 1 sequenced was a *Bacillus* strain.

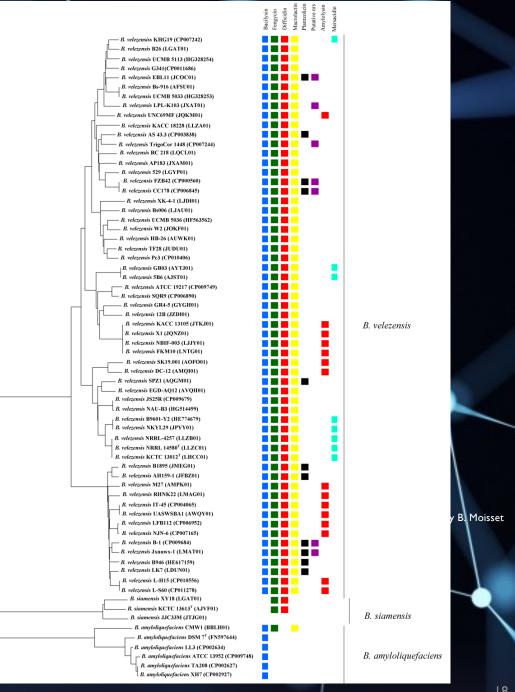
Table I. Genome statistics of B. amyloliquefaciens AS43.3size3961291 bpNumber of genes4037


Number of genes	4037
Number of proteins	3919
tRNAs	89
rRNAs	29
GC%	46.60%
average coverage	43×

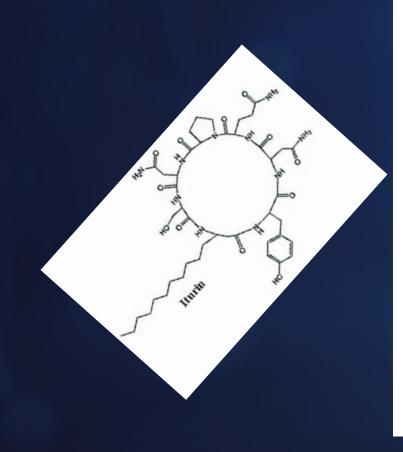

- Cheonggukjang is a fermented soybean paste similar Japanese natto. These are some of the richest food sources for vitamin K. These fermentations are dominated by *Bacillus* spp.
- At this time, we were still missing many reference genomes.

The taxon so popular it was described four times

- Most of the strains registered as Bacillus plant pathogen antagonists are B. velezensis. There are probably more than 100 commercial products around the world containing this species, under various species nomenclature going back to 1971.
- Strains of B. velezensis are isolated so commonly that I developed B. velezensis specific primers for a simple amplicon assay.



Dunlap, C.A., (2019). Taxonomy of registered *Bacillus* spp. strains used as plant pathogen antagonists. Biol. Control 134, 82-86.

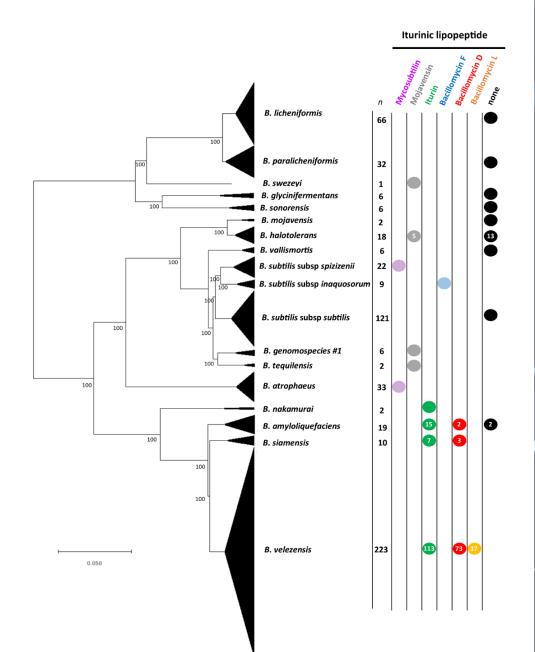

Bacillus velezensis

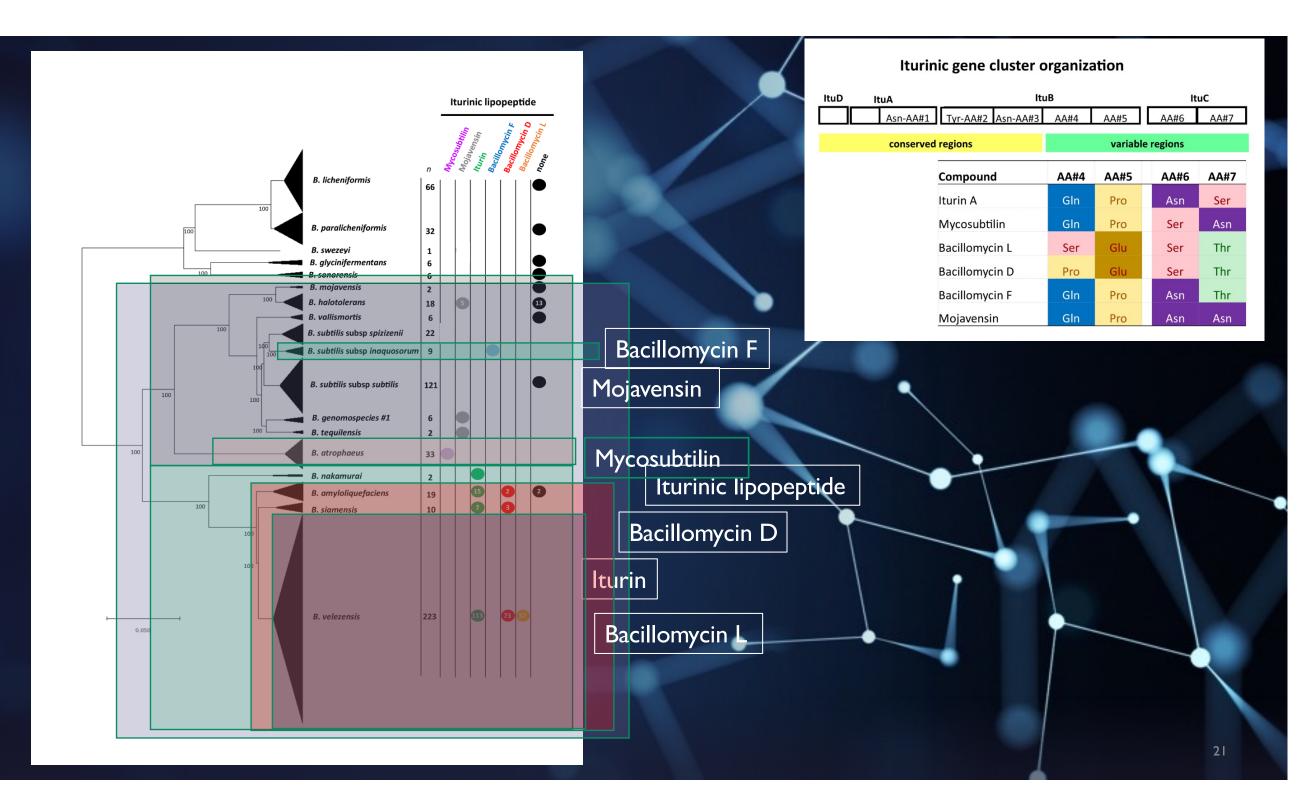
• Why is B. velezensis a biocontrol super star and its near neighbors are not?

Compound	Synthetase	Size	Bioactivity
	type	(kb)	
Surfactin	NRPS	26.2	multiple
Iturin	NRPS	37.2	antifungal
Fengycin	NRPS	37.7	antifungal
Bacillibactin	NRPS	12.7	siderophore
Bacilysin/chlorotetaine	NRPS	6.7	antibacterial
Macrolactin	PKS	53.2	antibacterial
Bacillaene	PKS	72,5	antibacterial
Difficidin	PKS	69,5	antibacterial

Iturins

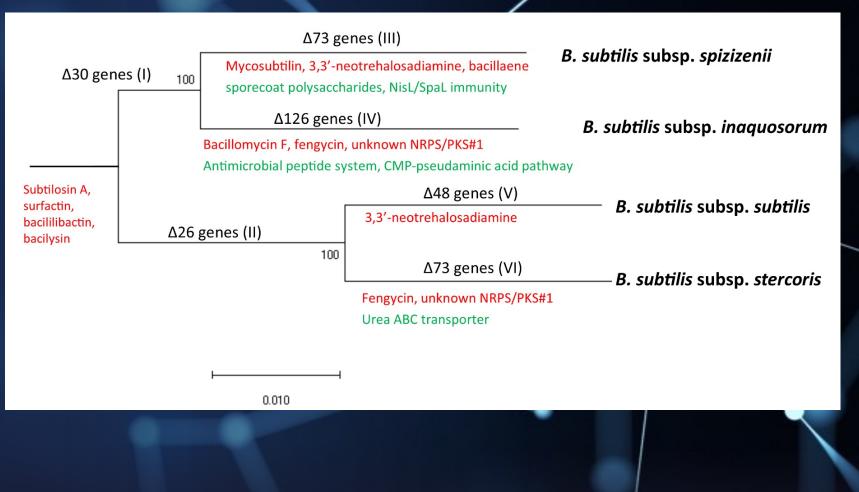
ltuD


Iturinic gene cluster organization


ltu	A	ltu	lt	JC								
	Asn-AA#1	Tyr-AA#2 Asn-AA#3	AA#4	AA#5	AA#6	AA#7						
	conserved regions			variable regions								
		Compound	AA#4	AA#5	AA#6	AA#7						
		lturin A	Gln	Pro	Asn	Ser						
		Mycosubtilin	Gln	Pro	Ser	Asn						
		Bacillomycin L	Ser	Glu	Ser	Thr						
		Bacillomycin D	Pro	Glu	Ser	Thr						
		Bacillomycin F	Gln	Pro	Asn	Thr						
		Mojavensin	Gln	Pro	Asn	Asn						

Moisset

Iturin diversity


- Usually all or none.
- Some are species specific.
- Several new producers identified.

Bacillus evoluton

- Species evolution in *Bacillus* is highly dependent on metabolites and microbe-microbe interaction.
- Species differ by ~200 genes from nearest neighbor.
- Understanding these interactions will help us understand improve Bacillus consortium

Other related projects

- NPDRS project on ambrosia beetles, vectoring with mites.
- Other NGS project developing primers for specialized community analysis (Bacillus, Pseudomonas, EPF, etc).

UGA2109039

bee projects

- Started last year identified bee-associated microbes in NRRL and sequenced the first group ~80 strains (Paenibacillus larvae, Paenibacillus apiarius, etc).
- New post-doc to work on gut microbiome formation.
- Exploring e-DNA applications.

Photo by B. Moisse

Collaborations

Future directions

- The genomics era is ending or at least becoming commoditized.
- We are running out of things to sequence.
- Need value from these existing genomes.
- Genome mining and expression of novel metabolites.
- Functional genomics to understand the effect of genotype.
- Transformable environmental strains.
- GMO strains for a variety of applications.
- Continued evolution of eDNA applications.
- New sequencing techniques (e.g. Hi-C, Tn-Seq, etc).
- New microbiome techniques.

What are BPIA research needs?

- Are there specific research needs for the industry?
- ARS is better suited to address some needs than University Scientists, since some areas aren't open to grant funding.
- Taxonomy, generate data to support regulatory issues, and other less flashy research.
- We are also able to do company specific research if it is the right fit.

Acknowledgements

None of this would be possible without great technical staff.

Heather

Ben

Angela

Maddy

