

Sterile Insect Technique (SIT)

Birth control for insects

Swetha Suresh Kumar

© 2024 BPIA ALL RIGHTS RESERVED

www.BPIA.org

Introduction

- Pest control challenges
 - Pesticide-resistant pests
 - spread of invasive species due to globalization
 - climate change
- Importance of pest control in
 - ► Agriculture
 - Public health
 - Conservation
- Sterile insect technique

© 2024 BPIA ALL RIGHTS RESERVED

BPIA.org

Sterilization using Radiation

- Balancing Sterility and Competitiveness
 - release insects both sterile and competitive with wild counterparts
- Dose Variability
 - carefully controlled sterility and competitiveness
 - excessive doses compromise competitiveness
 - insufficient doses ineffective sterilization
- Dose Uniformity Ratio (DUR)
 - maintain consistent dose
 - how evenly the dose is distributed within the chamber

(Simuta et al.,2021)

BPIA.org

Mass Rearing facilities

- Importance of Mass Rearing Facilities in SIT Programs
 - supply large numbers of sterile insects
 - help control pest population
- Components of Mass Rearing Facilities
 - insectaries equipped with breeding chambers
- Challenges in Maintaining Healthy Insect Populations
 - maintaining optimal environmental conditions
 - prevent disease outbreaks
- Best Practices for Healthy Insect Populations
 - strict hygiene protocol
 - monitor environmental parameters temperature, humidity

Release Strategies

- Importance of Strategic Release Planning in SIT
 - effectiveness of insect releases suppress or eradicate
- Examples of Successful Release Strategies
 - fruit flies deploying sterile insects at the onset of the pest's reproductive season
 - mosquitoes targeted release near breeding sites during periods of peak population density

Quality Control, Monitoring and Evaluation

Assessment Methods for Sterile Insects

monitor sterility levels through irradiation dose verification

assess physical fitness reproductive capacity

Monitoring Techniques for Released Insects

survival, dispersal and mating success

DNA barcoding to identify released individuals

Monitoring Methods for Population Density

regular surveys using trapping, surveillance

remote sensing technologies

Evaluation Criteria for Impact Assessment

reductions in pest populations, crop damage

(Culbert et al.,2020)

ATAC-Seq Pipeline Development at USDA-ARS

What?

- Project: Sterile Insect Technique (SIT) -ATAC-Seq data analysis
- Objective: Identify regulatory elements active/inactive in male and female fruit flies (Drosophila melanogaster)
- Why?
 - Purpose: Enhance SIT efficiency by manipulating gene expression related to insect reproduction
- How?
 - Tools: HPC, Slurm (Job scheduler), bwamem2, Trim Galore, samblaster, samtools, Macs2, ChiPseeker, Nextflow
 - Analysis: ATAC-Seq data processing, peak calling (MACS2), differential peak analysis(csaw), and annotation and visualization (Chipseeker)
 - End Goal?

- Application: Develop targeted strategies for controlling insect populations using SIT, leading to effective pest management
- reduced reliance on chemical pesticides

© 2021 BPIA ALL RIGHTS RESERVED

BPIA.org

Future Directions for Research and Innovation in SIT

- Advance genetic technologies and breeding strategies
 - development of sex separation techniques
 - genetic sexing strains
- Novel delivery methods and release strategies
 - aerial release systems
 - spatial targeted deployment
- Integrate SIT with complementary pest management approach
 - biological control
 - habitat modification
 - attract-and-kill strategies

References

- Gómez-Simuta, Y., Parker, A., Cáceres, C., Vreysen, M. J. B., & Yamada, H. (2021). Characterization and dose-mapping
 of an X-ray blood irradiator to assess application potential for the sterile insect technique (SIT). Applied radiation and
 isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine, 176, 109859.
 https://doi.org/10.1016/j.apradiso.2021.109859
- Tussey, D. A., Morreale, R., Carvalho, D. O., Stenhouse, S., Lloyd, A. M., Hoel, D. F., & Hahn, D. A. (2023). Developing methods for chilling, compacting, and sterilizing adult Aedes aegypti (Diptera: Culicidae) and comparing mating competitiveness between males sterilized as adults versus pupae for sterile male release. Journal of medical entomology, 60(5), 1038-1047. <u>https://doi.org/10.1093/jme/tjad079</u>
- Alphey, L., Benedict, M., Bellini, R., Clark, G. G., Dame, D. A., Service, M. W., & Dobson, S. L. (2010). Sterile-insect methods for control of mosquito-borne diseases: an analysis. *Vector borne and zoonotic diseases (Larchmont, N.Y.)*, 10(3), 295-311. <u>https://doi.org/10.1089/vbz.2009.0014</u>
- Culbert, N. J., Somda, N. S. B., Hamidou, M., Soma, D. D., Caravantes, S., Wallner, T., Wadaka, M., Yamada, H., & Bouyer, J. (2020). A rapid quality control test to foster the development of the sterile insect technique against Anopheles arabiensis. *Malaria journal*, 19(1), 44. <u>https://doi.org/10.1186/s12936-020-3125-z</u>